《视觉机器学习20讲》是计算机、自动化、信息、电子与通信学科方向的专著,详尽地介绍了K-Means、KNN学习、回归学习、决策树学习、RandomForest、贝叶斯学习、EM算法、Adaboost、SVM方法、增强学习、流形学习、RBF学习、稀疏表示、字典学习、BP学习、CNN学习、RBM学习、深度学习、遗传算法、蚁群方法等基本理论;深入阐述了视觉机器学习算法的优化方法和实验仿真;系统地总结了其优点和不足。
本书特别重视如何将视觉机器学习算法的理论和实践有机地结合,解决视觉机器学习领域中的诸多基础问题,可应用于医学图像分析、工业自动化、机器人、无人车、人脸检测与识别、车辆信息识别、行为检测与识别、智能视频监控等。本书特别重视算法的典型性和可实现性,既包含本领域的经典算法,也包含本领域的研究成果。
本书不仅可作为高年级本科生与研究生教材,而且也是从事视觉机器学习领域研发极为有用的参考资料。
目录
第1讲 K-means
第2讲 KNN学习
第3讲 回归学习
第4讲 决策树学习
第5讲 RandomForest学习
第6讲 贝叶斯学习
第7讲 EM算法
第8讲 Adaboost
第9讲 SVM方法
第10讲 增强学习
第11讲 流形学习
第12讲 RBF学习
第13讲 稀疏表示
第14讲 字典学习
第15讲 BP学习
第16讲 CNN学习
第17讲 RBM学习
第18讲 深度学习
第19讲 遗传算法
第20讲 蚁群方法
下载体验